Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
Migraine is a high-prevalence and disabling neurological disorder. However, information migraine management in real-world settings could be limited to traditional health information sources. In this paper, we (i) verify that there is substantial migraine-related chatter available on social media (Twitter and Reddit), self-reported by migraine sufferers; (ii) develop a platform-independent text classification system for automatically detecting self-reported migraine-related posts, and (iii) conduct analyses of the self-reported posts to assess the utility of social media for studying this problem. We manually annotated 5750 Twitter posts and 302 Reddit posts. Our system achieved an F1 score of 0.90 on Twitter and 0.93 on Reddit. Analysis of information posted by our 'migraine cohort' revealed the presence of a plethora of relevant information about migraine therapies and patient sentiments associated with them. Our study forms the foundation for conducting an in-depth analysis of migraine-related information using social media data.
translated by 谷歌翻译
Boundary conditions (BCs) are important groups of physics-enforced constraints that are necessary for solutions of Partial Differential Equations (PDEs) to satisfy at specific spatial locations. These constraints carry important physical meaning, and guarantee the existence and the uniqueness of the PDE solution. Current neural-network based approaches that aim to solve PDEs rely only on training data to help the model learn BCs implicitly. There is no guarantee of BC satisfaction by these models during evaluation. In this work, we propose Boundary enforcing Operator Network (BOON) that enables the BC satisfaction of neural operators by making structural changes to the operator kernel. We provide our refinement procedure, and demonstrate the satisfaction of physics-based BCs, e.g. Dirichlet, Neumann, and periodic by the solutions obtained by BOON. Numerical experiments based on multiple PDEs with a wide variety of applications indicate that the proposed approach ensures satisfaction of BCs, and leads to more accurate solutions over the entire domain. The proposed correction method exhibits a (2X-20X) improvement over a given operator model in relative $L^2$ error (0.000084 relative $L^2$ error for Burgers' equation).
translated by 谷歌翻译
This paper introduces and presents a new language named MAIL (Malware Analysis Intermediate Language). MAIL is basically used for building malware analysis and detection tools. MAIL provides an abstract representation of an assembly program and hence the ability of a tool to automate malware analysis and detection. By translating binaries compiled for different platforms to MAIL, a tool can achieve platform independence. Each MAIL statement is annotated with patterns that can be used by a tool to optimize malware analysis and detection.
translated by 谷歌翻译
In this study, we propose a lung nodule detection scheme which fully incorporates the clinic workflow of radiologists. Particularly, we exploit Bi-Directional Maximum intensity projection (MIP) images of various thicknesses (i.e., 3, 5 and 10mm) along with a 3D patch of CT scan, consisting of 10 adjacent slices to feed into self-distillation-based Multi-Encoders Network (MEDS-Net). The proposed architecture first condenses 3D patch input to three channels by using a dense block which consists of dense units which effectively examine the nodule presence from 2D axial slices. This condensed information, along with the forward and backward MIP images, is fed to three different encoders to learn the most meaningful representation, which is forwarded into the decoded block at various levels. At the decoder block, we employ a self-distillation mechanism by connecting the distillation block, which contains five lung nodule detectors. It helps to expedite the convergence and improves the learning ability of the proposed architecture. Finally, the proposed scheme reduces the false positives by complementing the main detector with auxiliary detectors. The proposed scheme has been rigorously evaluated on 888 scans of LUNA16 dataset and obtained a CPM score of 93.6\%. The results demonstrate that incorporating of bi-direction MIP images enables MEDS-Net to effectively distinguish nodules from surroundings which help to achieve the sensitivity of 91.5% and 92.8% with false positives rate of 0.25 and 0.5 per scan, respectively.
translated by 谷歌翻译
对于较高的自由度机器人,质量基质,科里奥利和离心力和重力矩阵在计算上很重,需要长时间执行。由于程序的顺序结构,多层处理器无法提高性能。需要高处理能力来维持更高的采样率。基于神经网络的控制是开发顺序模型的平行等效模型的绝佳方法。在本文中,基于深度学习算法的控制器设计为7度的自由外骨骼机器人。总共49个密集连接的神经元分为四层,以估计跟踪轨迹的关节扭矩要求。为了培训,提出了基于深度神经网络分析模型的数据生成技术。添加了PD控制器来处理预测错误。由于深度学习网络具有并行结构,因此使用多核CPU/GPU可以显着提高控制器的性能。仿真结果显示出非常高的轨迹跟踪精度。
translated by 谷歌翻译
由于计算机视觉的最新进展,流量视频数据已成为限制交通拥堵状况的关键因素。这项工作为使用颜色编码方案提供了一种独特的技术,用于在深度卷积神经网络中训练流量数据之前。首先,将视频数据转换为图像数据集。然后,使用您只看一次算法进行车辆检测。已经采用了颜色编码的方案将图像数据集转换为二进制图像数据集。这些二进制图像被馈送到深度卷积神经网络中。使用UCSD数据集,我们获得了98.2%的分类精度。
translated by 谷歌翻译
现在,具有成本效益的深度和红外传感器作为常规RGB传感器的替代方案已成为现实,并且在自主导航和遥控传感等域中具有比RGB的优势。因此,建立计算机视觉和深度学习系统以进行深度和红外数据至关重要。但是,仍然缺乏针对这些模式的大型标签数据集。在这种情况下,将知识从源模式(RGB)的良好标记的大型数据集训练的神经网络转移到在目标模式(深度,红外等)上工作的神经网络具有很大价值。出于内存和隐私等原因,可能无法访问源数据,并且知识转移需要仅与源模型一起使用。我们描述了一个有效的解决方案,插座:无源的跨模式知识转移,用于将知识从一个源模式转移到不同目标模式的具有挑战性的任务,而无需访问与任务相关的源数据。该框架使用配对的任务 - IRRELELERVANT数据以及将目标特征的平均值和方差与源模型中存在的批处理统计信息匹配,从而减少了模态差距。我们通过广泛的实验表明,我们的方法明显优于无法解释模式差距的分类任务的现有无源方法。
translated by 谷歌翻译
诊断出红斑的偏头膜(EM)皮肤病变,使用深度学习技术的莱姆病最常见的早期症状可以有效预防长期并发症。现有的基于深度学习的EM识别的作品仅由于缺乏与相关患者数据相关的莱姆病相关图像的数据集,因此仅利用病变图像。医师依靠患者有关皮肤病变背景的信息来确认其诊断。为了协助深度学习模型,根据患者数据计算出的概率分数,这项研究引起了15位医生的意见。对于启发过程,准备了一份与EM相关的问题和可能的答案的问卷。医生为问题的不同答案提供了相对权重。我们使用基于高斯混合物的密度估计将医生评估转换为概率得分。为了引起概率模型验证,我们利用了形式的概念分析和决策树。引起的概率得分可用于使基于图像的深度学习莱姆病预扫描剂稳健。
translated by 谷歌翻译
3D反向工程是一个备受追捧的人,但在计算机辅助设计(CAD)行业中却没有完全实现。目的是恢复CAD模型的施工历史。从CAD模型的边界表示(B-REP)开始,本文提出了一个新的深神经网络CADOPS-NET,该网络共同学习了CAD操作类型和分解为不同的CAD操作步骤。这种联合学习允许将B-REP划分为在同一施工步骤中由各种CAD操作创建的部分;因此,提供相关信息以进一步恢复设计历史记录。此外,我们提出了新颖的CC3D-OPS数据集,其中包括带有CAD操作类型标签和步骤标签注释的37K $ CAD型号。与现有数据集相比,CC3D-OPS模型的复杂性和种类更接近用于工业目的的模型。我们对拟议的CC3D-OPS和公开融合360数据集进行的实验证明了Cadops-NET相对于最先进的竞争性能,并确认了CAD操作类型和步骤联合学习的重要性。
translated by 谷歌翻译